• 티스토리 홈
  • 프로필사진
    Cat_Code
  • 방명록
  • 공지사항
  • 태그
  • 블로그 관리
  • 글 작성
Cat_Code
  • 프로필사진
    Cat_Code
    • 분류 전체보기 (114) N
      • [네이버 부스트캠프] (46)
        • ⭐주간 학습 정리 (43)
        • 🎶추가 학습 정리 (3)
      • [연습의 흔적들] (27)
        • 백준⚾ (26)
        • 캐글 & 데이콘 🤝 (1)
      • [ML] (23) N
        • 머신러닝 💕 (5)
        • 딥러닝 🔫 (10)
        • 데이터 분석 🖤 (1)
        • 수학 ☑️ (4)
        • LLM🦜 (3) N
      • [CS] (14)
        • 파이썬 🖤 (10)
        • 해체 분석기📝 (3)
        • Service Product (1)
        • MultiMedia (0)
      • [개발일지] (2)
  • 방문자 수
    • 전체:
    • 오늘:
    • 어제:
  • 최근 댓글
      등록된 댓글이 없습니다.
    • 최근 공지
        등록된 공지가 없습니다.
      # Home
      # 공지사항
      #
      # 태그
      # 검색결과
      # 방명록
      • 포스트글 썸네일 이미지
        [궁금한건 못참아]라이브러리 vs. 직접구현
        Cat_Code:
        피어슨 상관계수와 코사인 유사도에 글을 정리하던 중 이미 해당 공식들은 numpy나 scipy에 존재했다 피어슨 상관계수? [머신러닝+선형대수] 상관관계와 코사인 유사도 통계와 머신러닝에서 가장 근본적이면서 중요한 분석 방법은 상관관계를 분석하는 것이다 상관관계를 살펴보기 위해서는 상관계수를 구하는 방법이 있다 상관계수는 -1 부터 +1까지의 범위로 eumgill98.tistory.com 이때 갑자기 의문점이 하나 생겼다 과연 직접 구현함 함수와 라이브러리에 있는 함수의 속도 차이가 존재할까? 오늘은 이런 의문점을 해결하기 위해서 간단한 실험을 진행해 보았다 실험 설계 오늘 비교할 공식 재료 : `피어슨 상관계수` 비교할 대상 (1) 직접 구현한 피어슨 상관계수 함수 (2) Numpy의 np.corrco..
        • 2023-11-16 19:01:04
      • 포스트글 썸네일 이미지
        [네이버 부스트 캠프 AI Tech] 파이썬, Numpy, Pandas
        Cat_Code:
        본 글은 네이버 부스트 캠프 AI Tech 기간동안 개인적으로 배운 내용들을 주단위로 정리한 글입니다 본 글의 내용은 새롭게 알게 된 내용을 중심으로 정리하였고 복습 중요도를 선정해서 정리하였습니다 ✅ Week 1 목차 Lambda, map, reduce decorate logging Handling logging configparser, argparser 정규식 numpy shape handling pandas ✅lambda, map, reduce (복습 중요도 : ⭐⭐) ✔️lambda - 함수 이름 없이 - ex) def ~~~, 함수처럼 쓸 수 있는 익명 함수 #일반적으로 함수를 활용해서 뺄셈 기능을 구현한다고 한다면 def minus(x , y): return (x - y) #함수 사용 prin..
        • 2023-03-10 19:30:31
      조회된 결과가 없습니다.
      [1]
      스킨 업데이트 안내
      현재 이용하고 계신 스킨의 버전보다 더 높은 최신 버전이 감지 되었습니다. 최신버전 스킨 파일을 다운로드 받을 수 있는 페이지로 이동하시겠습니까?
      ("아니오" 를 선택할 시 30일 동안 최신 버전이 감지되어도 모달 창이 표시되지 않습니다.)
      목차
      표시할 목차가 없습니다.
        • 안녕하세요
        • 감사해요
        • 잘있어요

        티스토리툴바